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Abstract

For every n, we construct two arcs in the four-punctured
sphere that have at least n intersections and which do
not form spirals. This is accomplished in several steps:
we first exhibit closed curves on the torus that do not
form double spirals, then arcs on the four-punctured
torus that do not form spirals, and finally arcs in the
four-punctured sphere which do not form spirals.

1 Introduction

In a surface, draw a pair of curves with a large number
of intersections. Must the drawing contain any partic-
ular sub-structures? And if so, can these structures be
used to simplify the drawing? Affirmative answers to
these questions can be used to bound the complexity of
certain drawings, such as those yielding string graphs.
A string graph is the intersection graph of curves in the
plane or other surface. Recognition for string graphs is
an old problem [1, 2] that was recently solved in the pla-
nar case [6, 10] by bounding the complexity of a minimal
drawing realizing the string graph.

Which sub-structures might we expect to see in a
drawing of two curves with a large number of inter-
sections? Starting with any drawing, one can increase
the number of intersections, by taking a section of one
curve and dragging it over the other curve. This creates
a bigon, see Figure 1. Of course, there is an obvious sim-
plification. Moreover, it is not hard to create a drawing
with many intersections and no bigons.

Figure 1: α and β form a bigon.

Another candidate structure is a fold, pictured in Fig-
ure 2. Kratochv́ıl and Matoušek [5] use folds to create
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string graphs whose drawings require Ω(2n) intersec-
tions. This figure also indicates a bigon, but it can eas-
ily be eliminated by puncturing the surface or adding
genus in the middle of the bigon. So while a fold with-
out a bigon does not yield an obvious simplification, it
does indicate topological complexity of the surface.

Figure 2: A fold. The vertical arc is a section of the
curve α all others are portions of the curve β.

The focus here is a third structure, the spiral, pictured
in Figure 3. Two spanning arcs, β and γ, of an annulus
A form a d-spiral in A if they have minimal intersection
(no bigons) in A and they intersect d + 2 times in A. If
d ≥ 1, we say that β and γ form a spiral in A. Similarly,
we will say that two curves, β ⊂ F and γ ⊂ F , form a
d-spiral in F if there is an embedded annulus A ⊂ F so
that sub-arcs of β and γ form a d-spiral in A. Again, if
d ≥ 1, we say that β and γ form a spiral in F .

�

Figure 3: β and γ form a 1-spiral.

Pach and Tóth [6] showed that spirals can be used
to simplify certain string drawings. In this and a com-
panion paper [9], we exhibit drawings with an arbitrary
number of intersections and no spirals. The compan-
ion paper shows that certain drawings in the torus are



spiral-free by analyzing intersection words. Here we use
topological techniques to construct spiral-free drawings,
both in the torus and in punctured spheres. All the
drawings are bigon free and the torus drawings are also
fold-free. Thus, eliminating spirals is not sufficient to
bound the complexity of drawings in surfaces of higher
genus. This result casts doubt on the hope that a com-
plex drawing must necessarily contain a complex sub-
drawing in a simple subsurface. In particular, one can-
not expect to find a complex sub-drawing in a disk (a
bigon) or an annulus (a spiral).

2 Arcs and Spirals

We will assume that curves in a surface are properly
embedded, that is, they do not intersect themselves and
arc-components have their endpoints in the boundary of
the surface. Any endpoint not in the boundary can be
easily fixed by puncturing the surface at the endpoint.

Disjoint spanning arcs will have very similar behav-
ior in an annulus A. This can be seen in the following
lemma, which gives bounds on i(·, ·), the number of in-
tersections between a pair of curves.

Lemma 1 Suppose that β, β′, γ and γ′ are spanning
arcs for an annulus A, all pairs have reduced inter-
section, and i(β, β′) = i(γ, γ′) = 0. Then |i(β, γ) −
i(β′, γ′)| ≤ 2.

We also show that parallel disjoint spirals imply the
existence of deeper spirals:

Lemma 2 Suppose that β and γ form a d-spiral in F ,
β′ and γ′ form a d′-spiral in F , i(β, β′) = i(γ, γ′) = 0,
and that all pairs have reduced intersection in F . If
the defining annuli A and A′ are disjoint in F but have
boundary curves that are isotopic in F then β and γ
form a (d + d′)-spiral in F .

3 Fibonacci curves: 2-spiral free curves on the torus

For our first example, we construct pairs of curves on
the torus that while containing spirals, do not contain
deep spirals.

Fortunately, it is easy to represent closed curves on
the torus, see for example [8]. First, one chooses a (non-
unique) basis, any pair of curves, µ and λ, such that
i(µ, λ) = 1. We can think of the longitude, λ, as the
curve that goes the “long” way around the torus once
and the meridian, µ, as a curve that goes once around
the “short” way. (This is a highly prejudicial view, but
one that won’t lead us astray). Then any closed multi-
curve on the torus, γ, can be represented by an ordered
pair of integers, p measuring the number of times the
curve wraps longitudinally and q the number of times
the curve wraps meridionally, i.e., γ = pλ + qµ = (p, q).

The curve indicated by (Fn, Fn−1), a pair of sequen-
tial Fibonacci numbers, does not form a deep spiral with
the basis curve µ = (0, 1):

Theorem 3 The curves γn = (Fn, Fn−1), n ≥ 1 and
µ = (0, 1) do not form a d-spiral on the torus for d ≥ 2.

Figure 4: The curve (Fn, Fn−1) = (8, 5) on the torus.

4 Train Tracks

Train tracks give us a shorthand for drawing compli-
cated multi-curves on a surface. They are very useful in
studying diffeomorphisms of surfaces [7] and were used
by Hass, Snoeyink and Thurston to construct unknots
with large spanning disks [3]. A train track is a graph
T embedded in the surface F so that each vertex of
T has a well-defined tangent and degree either one or
three. (See the figures in later sections.) The vertices
of degree one are called terminals, the vertices of de-
gree three are called switches, and the edges are called
branches. Because of the well-defined tangent, there are
two branches coming into one side of each switch and
one branch on the other.

We specify an embedded multi-curve in an arbitrar-
ily small neighborhood of the track T by adding a
weight wi, a non-negative integer, to each branch. The
weight vector −→w will denote the collection of weights
for each branch. The weighted track {T,−→w }, deter-
mines a unique multi-curve in the neighborhood of the
track, where the weights indicate the number of times
the multi-curve travels along each branch. In order that
the multi-curve respect the tangency conditions at the
switches, the set of weights {wi} is required to satisfy a
matching equation at each switch. That is, the sum of
the weights of the branches entering the switch from one
side is equal to the weight of the branch on the other.
For example, in the track in Figure 5, the switches yield
two matching equations, each being p = q + r. We will
also adopt the convention that a branch meeting a ter-
minal has weight one.

We say that T carries a multi-curve β ⊂ F , if there is
a set of weights on T satisfying the matching equations
that induces β.



We will say that a multi-curve carried by a train track
contains a d-spiral if some component of the multi-curve
forms a d-spiral in F with a basis arc for a branch of T ,
that is, an arc embedded in F that meets T transversely
in a single point contained in that branch.

5 Spiral-free on the torus

Figure 5 indicates a train track on a torus. This train
track carries all closed multi-curves on the torus whose
coordinates (p, q) satisfy p ≥ 0, q ≥ 0.
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q

Figure 5: The train track T0 on a torus.

It follows from Theorem 3 that we can weight track
T0 so that it does not contain deep spirals.

Corollary 4 The weighted train track {T0|p = Fn,
q = Fn−1, r = Fn−2} does not contain a d-spiral for
d ≥ 2.

We now consider the train track T1 pictured in Figure
6(a). We identify opposite edges of the square so this
train track is embedded in the torus. In this section we
sketch a proof that that {T1|p = P = Fn − 1, q = Q =
Fn−1 − 1, r = R = Fn−2 − 1, terminals have weight 1}
is spiral-free.
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Figure 6: a) The train track T1. The weighted track (T1,
p = P = Fn − 1, q = Q = Fn−1 − 1, r = R = Fn−2 − 1)
has no 1-spirals, b) embedding curves from T1 in T0,

The most interesting property of this track is that
it admits a map π : T1 → T1, defined by rotat-
ing the square about its center through the angle π.
Moreover, π is an involution, that is, it is its own in-
verse. The involution π is orientation-preserving and
exchanges branches with lower-case labels with branches

with upper-case labels. The only fixed points of the in-
volution π as it acts on the torus are: the center of
the square, the corners of the square (all identified to a
single point), and the midpoint of each edge (opposite
edges identified). Since the track T1 avoids all of these
points, π : T1 → T1 is fixed-point free. We have:

Lemma 5 π : T1 → T1 has no fixed points.

Lemma 6 π does not preserve any closed connected
curve γ carried by T1.

There is also a natural embedding ε : T1 → T0 of any
curves carried by T1 into the track T0. This is accom-
plished by connecting the terminals and then collapsing
nearby parallel branches into a single branch, see Figure
6. For closed curves ε can be thought of as a map that
converts to lower-case. If γ is a closed curve carried by
T1, then ε(γ) will be carried by T0, where its weights
are the sum of the upper- and lower-case weights of T1:
i.e., p′ = p+P, q′ = q+Q, r′ = r+R. If γ contains arcs,
and the weight of each terminal is 1, then ε(γ) consists
of sub-arcs of a closed multi-curve carried by T0. In this
case, the weights of the closed multi-curve carried by T0

will be p′ = p + P + 2, q′ = q + Q + 2, r′ = r + R + 2.
The involution π will preserve a multi-curve carried

by T1 if and only if the curve’s weights are preserved by
π, that is p = P, q = Q, r = R, and terminals of equal
weight are exchanged.

Lemma 7 Let γ be a closed curve carried by T1. Then
ε maps γ and π(γ) to isotopic curves in T0.

Proposition 8 Suppose that the weighted train track
{T1|−→w } is invariant under π and contains a spiral.
Then {T1|−→w } contains two disjoint spirals.

Note that the weighted track {T1|p = P = Fn−1, q =
Q = Fn−1−1, r = R = Fn−2−1, terminals have weight
1} is invariant under π. If it contains a 1-spiral, then
Proposition 8 implies that we can actually find two dis-
joint spirals. By Lemma 7, ε maps these to disjoint
parallel spirals in {T0|p′ = 2Fn, q = 2Fn−1, r = 2Fn−2}.
But then, Lemma 2 tells us that this weighted track has
a 2-spiral, in direct contradiction to Theorem 3. We
have:

Theorem 9 The weighted track {T1|p = P = Fn − 1,
q = Q = Fn−1 − 1, r = R = Fn−2 − 1, terminals have
weight 1} does not contain a d-spiral for d ≥ 1.

The multi-curve in T1 specified by these weights con-
sists of four arcs. Let α be the one with the highest p
weight (its weight on the track labeled p). Then α and
β, a basis arc for the p branch, are both properly embed-
ded in a small neighborhood of the track T1, a surface
homeomorphic to the 4-punctured sphere. Moreover,
they have at least Fn−1

4 intersections without forming a
spiral, fold or bigon.



Corollary 10 For every n, there are two arcs in the 4-
punctured torus which have at least n intersections and
which do not form a bigon, fold, or spiral.

6 Spiral-free curves in the plane

We are now ready to prove our ultimate goal, that the
planar weighted track pictured below is spiral-free.
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Figure 7: The weighted track {T2|p = Fn−1, q = Fn−1−
1, r = Fn−2 − 1, terminals have weight 1} is spiral-free.

There is a strong similarity between the (weighted)
tracks T1 and T2. This similarity is induced by π: We
can view T1 as formed by cutting each of the loops of
T2, taking two copies, and then gluing them together.
Or alternatively, the track T2 can be seen as a copy
of T1 where each point has been identified with its im-
age under π: x = π(x). There is a natural projection
ρ : T1 → T2 which sends each point in T1 to its cor-
responding identified point: ρ(x) = ρ(π(x)). In fact,
ρ is a local homeomorphism, and restricts to a homeo-
morphism of any neighborhood U ⊂ T1 that is disjoint
from its image π(U) ⊂ T1. Together, the space T1 and
map ρ are referred to as a covering space of T2. See [4].
Covering spaces have very strong properties. Here we
will use only the fact that any simply-connected region
U ⊂ T2 lifts to T1, that is, the inverse image ρ−1(U)
consists of n disjoint regions {U1, U2, ..., Un} ⊂ T1, each
homeomorphic to U . In our case, T1 is a double-cover
of T2, i.e. n = 2. Points, arcs, and disks are all sim-
ply connected, so each will lift to two disjoint identical
copies in T1. While a spiral is not simply-connected, it
is a consequence of Lemma 6 that it will also lift to two
disjoint spirals.

Because the lower-case and upper-case weights are
equal, ρ can also be regarded as a covering map between
the weighted tracks ρ : {T1|p = P = Fn − 1, q = Q =
Fn−1 − 1, r = R = Fn−2 − 1, terminals have weight
1 } → {T2|p = Fn − 1, q = Fn−1 − 1, r = Fn−2 − 1,
terminals have weight 1}, carrying induced curves to
induced curves. Since spirals lift, Theorem 9 implies
that the weights on T2 do not determine a spiral.

Theorem 11 The weighted train track {T2|p = Fn −
1, q = Fn−1 − 1, r = Fn−2 − 1, terminals have weight 1}

does not contain a spiral.

These weights specify two arcs (and no closed curves)
in T2. The arc with the largest p weight and a basis
arc for the p branch are properly embedded in a regular
neighborhood of the track T2, have at least Fn−1

2 inter-
sections, and do not form a bigon or spiral. Since the
neighborhood of T2 is homeomorphic to a 4-punctured
sphere, we have:

Corollary 12 For every n, there are two arcs in the
4-punctured sphere which have at least n intersections
and which do not form a bigon or spiral.
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exponential representations. Journal of Combinatorial
Theory, Series B, 53:1–4, 1991.
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